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1. INTRODUCTION 

Two active fields of current investigation in spectral methods are: (i) the search 
of efficient solution techniques for the algebraic systems arising from spectral 
approximations, with an emphasis on those methods which can be advantageously 
implemented on parallel processors; (ii) the search of efficient and accurate 
strategies of partitioning the physical domain into simple subdomains, in order to 
handle complex geometries, nonsmooth solutions or exceedingly large problems. 
The reader interested in an overview on these topics can refer, e.g., to Chapters 5 
and 13 in [2] and the references therein. 

The present report aims to bring a contribution to both the themes. We focus on 
the Helmholtz problem in a d-cube (d= 2, 3), subject to different boundary condi- 
tions and discretized by a Chebyshev collocation method. We use a finite element 
preconditioner in solving the collocation scheme by an iterative procedure. As a 
matter of fact, the starting point of the present investigation has been the paper [6] 
by Deville and Mund, who first demonstrated numerically the superior precondi- 
tioning properties of finite elements over finite differences for spectral systems. 

First, we propose an approximate AD1 “inversion” of the finite element matrix, 
which yields nearly as good preconditioning properties as the exact inverse and 
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which can be performed in parallel over the row and the columns of the Chebyshev 
grid. Next, we indicate a mathematically correct formulation of the finite element 
preconditioner which produces an accurate, unambiguous, and efficient treatment 
of Neumann boundary conditions, or interface conditions in domain decomposition 
methods. The proposed method allows one to solve problems with Neumann 
boundary conditions specified on two or more adjoining sides, or multidomain 
problems with interior interface corners. The multidomain cost is only slightly 
larger than the one of a full Dirichlet problem for the same operator in a single 
domain formulation, with the same number of gridpoints. 

An outline of the paper is as follows: Section 2 deals with the description of 
suitable AD1 preconditioners, for the constant coefficient operator in 2D (Subsec- 
tion 2.1), in 3D (Subsection 2.2), and for the variable coefficient case (Subsec- 
tion 2.3). The Neumann problem is discussed in Section 3. Finally, the domain 
decomposition method is presented in Section 4. 

2. AN ADI-FINITE ELEMENT PRECONDITIONER 

Let us consider the Dirichlet boundary value problem for the Helmholtz operator 
in the domain Q = (- 1, l)d (d= 2 or 3) 

-AU+cU=f in Sz 

U=@ on aa, 
(2.1) 

where c>O is a constant andf, @ are given, smooth data. 
In order to define a Chebyshev collocation approximation to this problem, let us 

introduce a d-uple N= (N,),=_,, _,,, d~ Nd of positive integers, and the corresponding 
Chebyshev-Lobatto grid in 52 

G,= {<= (<ji)),=, ,_,,, d 1 (ji)=cos(in/N,), for some i, O< i<N,}. (2.2) 

Next, let P,(Q) denote the space of the polynomials in Jz of degree up to N, in the 
xrvariable, 16 I< d. The Chebyshev collocation approximation to the solution U 
of (2.1) is a polynomial u = uN E PN(Q) defined by the set of equations 

C-Au+cul(O=f(5) VrEG,nQ, (2.3) 

45) = @(Cl V<~G,nda. (2.4) 

The unknowns are the grid values of u at the points of G,. The stability and 
convergence properties of such a numerical approximation have been established in 
[S] (see also [2, Chap. 111). 

The matrix of the linear system (2.3k(2.4) is not banded and ill-conditioned. 
Although the specific constant-coefficient problem (2.3~(2.4) can be efficiently 
solved by direct methods based on orthogonal decompositions of the corresponding 
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matrix (see, e.g., [2, Sect. 5.11, we focus here on iterative methods of solution. 
Indeed, direct methods become extremely expensive in three space dimensions for 
large values of N. Furthermore, as discussed in Section 2.3, our approach can be 
extended to general variable-coefficient problems. 

Perhaps the simplest iterative procedure, which has become very popular within 
spectral methods, is the so-called “preconditioned Richardson iteration,” first 
proposed by Orszag [ 121. Starting from an initial point u” E P, which satisfies the 
boundary conditions (2.4), a sequence of polynomials uk E P,,,(G) (individually 
satisfying (2.4)) is generated by the relation 

Uk+l=Uk-ClkA-i(LspUk-f), k=O, 1,2, . . . . (2.5) 

Here, u denotes the vector of the gridvalues of the polynomial function u at the 
interior gridpoints in G, n 52. Moreover, L,uk = -Auk + cuk E P,.,(Q), whereas A 
stands for an easily invertible approximation of the Helmholtz operator with 
homogeneous Dirichlet boundary conditions, built-up at the gridpoints of G,. 
Finally, mk is a positive acceleration parameter, which may vary from one iteration 
to the other. An abundant literature has appeared in recent years, concerned with 
the choice of the appropriate preconditioner and the acceleration parameter (see, 
e.g., the discussion given in [2, Sects. 5.2-5.41 and the references therein). In most 
cases, A is an approximate factorization of the second-order finite difference scheme 
for the Laplacian on GN. 

The use of a preconditioner based on finite elements rather than finite differences 
was proposed independently by Canuto and Quarteroni [3], who chose a varia- 
tional formulation involving the Chebyshev weight w(t) = (1 - <2))1/2, and by 
Deville and Mund [6] who preferred the more familiar formulation with constant 
weight w(5) - 1. The latter authors gave numerical evidence to the fact that in two 
space dimensions bilinear finite elements exhibit better preconditioning properties 
than the five-point finite differences. This improvement is attributed to the property 
of the finite element method of providing a natural coupling among the algebraic 
equations to be satisfied at each gridpoint. Another advantage of the finite element 
method is its easiness in handling Neumann-type boundary conditions. This issue 
will be adressed in the next sections. Deville and Mund invariably use a direct 
solver to get the finite element correction at each iteration of (2.5). Hereafter we 
rather propose an approximate, iterative solver of AD1 type. 

Let us start by describing in some detail our exact finite element preconditioner. 
Denote by R, the collection of rectangles (resp., parallelepipeds) whose vertices are 
four (resp., eight) neighboring gridpoints of the grid G, in dimension d= 2 (resp., 
d= 3). Let Q, be the space of the polynomials linear in each variable. We introduce 
the space of the continuous finite element functions 

Given a continuous function @ on the boundary of a, let Vh(@) be the afline 
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space of the functions in V, which coincide with @ at the boundary nodes of G,, 
i.e., 

V/r(@)= {w J’,zl v,(t)= @(O V~G,J-J}. (2.7) 

We set c = Vh(0), the linear subspace of Vh of the functions vanishing on the 
boundary. It is useful to define the following interpolation operators in 0. Let I,, be 
the Lagrangean finite element interpolator on the grid GN, i.e., 

I,: CO(sz) + v, such that (Z,,v)(t)= u(r) Vt; E G,. (2.8) 

Denote by Zi the Lagrangean finite element interpolator on G,, which sets to zero 
the values of the function on the boundary %2; i.e., 

z;: CO(S) + v; such that (Ziu)(t) = 45) V(~G~ni-2 
o 

v<EGNnaa. (2.9) 

Finally, Z,,, will be the spectral interpolator on the grid G,; i.e., 

IN: c”(n) + P&2) such that (Z,u)(r) = u(g) Vt E GN. (2.10) 

Given a function FeL2(S2), let us denote by wh =Af,‘[F] the finite element 
solution of the following problem 

w/l E vho, s (Vw,Vu, + cw/, v/J = Fuh, vv, E vh”. (2.11) 
h-2 

The preconditioned Richardson iterations are defined as follows: the starting point 
is chosen to be the spectral interpolant of the finite element approximation to the 
Dirichlet boundary problem (2.1); i.e., we set u” = Z,w& where wi satisfies 

w:: E V/J@), I (VW:: vu, + cw&) = 
52 s jiik, vu, E v;. (2.12) 

R 

The subsequent interations are defined via the formula 

Uk+l =Uk-akzp4/,‘[I&puk-f)], (2.13) 

where ak is an acceleration parameter, whose choice will be discussed in the sequel. 
Formula (2.13) is a functional formulation of the Richardson iterations, since the 

equality sign is between polynomials in P,. Readers more familiar with a matrix 
formulation, can think of (2.13) as 

uk+l=uk-ak(S+cM)-l M(L,uk-f). (2.14) 

As before, u denotes the vector of the interior gridvalues of the function u in Q. S 
is the stiffness matrix associated with the finite element approximation to the 
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Laplace operator with homogeneous boundary conditions. A4 is the corresponding 
mass matrix, acting on the interior gridvalues only. 

The formulation given so far assumes that each finite element system, such as 
(2.11) or (2.13) is solved exactly. In practice, an approximate solution of these 
systems will be enough to ensure good preconditioning properties. Taking advan- 
tage of the tensor-product structure of our problem, we propose to solve the system 
(2.11) (and (2.12)) by an alternating direction iterative (ADI) method. Thus, 
denoting now by w,, = &‘il [F] the approximate solution of (2.11) obtained by a 
fixed number of AD1 sweeps starting from the initial value wlp’ = 0, (2.13) becomes 

Uk+ l= Uk + akz,~~l[z~(L,pUk--f)]. (2.15) 

The initial point of this iterative procedure is also computed by a fixed number of 
AD1 sweeps applied to (2.12). 

In the rest of the section, we briefly describe AD1 procedures for solving the 
algebraic system 

(S+cM)w=MF (2.16) 

corresponding to (2.11). Moreover, we discuss their theoretical and practical per- 
formances as preconditioners in the iterative scheme (2.15). Finally, we indicate 
how to extend the methods to variable coefficient problems. From now on the 2D 
case and the 3D case will be treated separately. 

2.1. Two-Dimensional Problems 
We consider the AD1 method proposed by Douglas and DuPont [S]. Set 

N= (N,, NY) and (xi, x2) = (x, y), Let al(x), i = 0, . . . . N, be the continuous function 
in [ - 1, 11, piecewise linear on the mesh generated by the grid points 
(xk = cos(k~/N,), k = 0, . . . . N,} such that ai = 6,, j= 0, . . . . N, (6, denotes the 
Kronecker index). Let /Ij( y), j = 0, . . . . NY be defined similarly. Then 

M=M,@M,, s=s,@M,+M,@S, (2.17) 

where the symbol 0 denotes the familiar tensor product between matrices, and 1 AI,= ai a/c(X) dx My= -1 i, k = 1, N, - . . . . 1 1, B,(y)B,(Y)dY} j,l= 1, .._, NY- 1 

a;(x) a;(x) dx 
i,k=l,...,N,-1 

Set 

A,=&+;&, A,=S,+;M,, 

and denote by Z, (resp., I,) the identity matrix of order (N, - 1) (resp., (N,, - 1)). 
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We introduce the new unknown 5 = Z, @ MYw and q = ZY @I M,w, where w is 
obtained by reversing the row-column ordering of w, and we proceed as follows: 
given w”, set ‘1’ = Z, 6 M,G’; then, compute the general step: 

Zy~(M,+dt”+1A,)~“+1’2=dfn+1Mx~‘MyF+Zx~(My-dtn+1Ay)~“; 

Z,8(M,+dt”+1Ay)~“+1=dt”+1M,OM,F+Z,O(M,-dt”+’A,)~“+“2. 
(2.19) 

Finally, after the last iteration, recover w from q by solving 

ii=ZyQM;‘rj. (2.20) 

Each one of the previous systems is indeed a collection of linear systems acting on 
the unknows of one row or one column of the grid. Thus, they can be solved by 
a parallel procedure. The corresponding matrices are tridiagonal. So, the computa- 
tional amount of work per sweep is the solution of 2(N, - 1) (resp., 2(N, - 1)) 
triangular systems, plus one LU factorization of a (ZV, - 1) x (ZV, - 1) and a 
(NY - 1) x (NY - 1) tridiagonal matrix which can be done once for all. At the begin- 
ning a matrix-vector multiplication has to be performed, whereas at the end the 
system (2.20) has to be solved. Note that, although bilinear finite elements lead to 
algebraic equations involving nine neighboring unknowns, the computational effort 
of the AD1 procedure is essentially the same as the one required for solving the 
familiar live-point finite difference approximations with an iterative scheme of the 
same kind. 

It is known that a fast convergence of an AD1 scheme requires proper selection 
of the parameters (At”}. Following [13], we pick a cyclic geometric sequence of 
(At”) of prescribed cycle length LC (the effective choice of dt” and LC are recalled 
in the Appendix, formulae (A.9)-(A.11)). With such a choice, an error reducton by 
a factor E can be obtained with O(log(p,,,/p,,)). O(log E-‘) iterations, where 

Eirk 
and Pmin are the maximum and minimum eigenvalues of the one-dimensional 

element matrices. For the Chebyshev grid, ~~~~~~~~~ = 0(N4), where 
N= max(N,, ZV,,). Thus, the number of AD1 iterations needed to reach a prescribed 
accuracy in solving problem (2.11) grows only logarithmically with the number of 
gridpoints. This fact has the following effect on the preconditioning of the spectral 
matrix L,: Denote here by A/, = M-‘(S + CM) the matrix corresponding to the 
exact finite element problem (2.1 l), and let d$ be its approximation obtained by 
performing one cycle of length LC of AD1 iterations. Then, the modulus K of the 
ratio of largest to smallest eigenvalue of ~4;’ L, obeys a law of the type 

(2.21) 

where E is the error reduction factor corresponding to the cycle length LC (we will 
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prove the previous relation in Appendix A, under the assumption of periodic 
boundary conditions). It is known (see [6] and Appendix A) that rc(Af, ’ LSP) is 
bounded independently of N. Thus, the same property holds for the matrix 
&;‘L,, provided the cycle length LC is increased at a logarithmic rate in the 
number of gridpoints. 

Let us now briefly discuss the computational cost of the ADI-preconditioned 
method (2.19). For the sake of simplicity we assume here that N, = NY= N. The 
cost of one AD1 step is asymptotic with 12 N* operations as N + cc (if the fac- 
torization of the tridiagonal matrices is performed and stored once for all). On the 
other hand, the cost of computing the spectral residual L,u-f is asymptotic with 
10 N* log,N operations, since one discrete Chebyshev transform can be performed 
in 5/2 N* log,N + 1 lN* operations as N -+ co. We conclude that a fixed reduction 
in the relative residual can be obtained in O(N* log,N) operations. The reader 
should also take into account that our iterative method can be completely 
parallelized on the rows and columns of the mesh. 

Finally, a few words about the choice of the acceleration parameter ak. It can be 
kept fixed throughout the iterations, or chosen at each iteration in order to 
minimize a suitable norm of the residual. In the latter case, we shall minimize the 
discrete L*-norm (at the interior grid points of GN) of the preconditioned residual 

res k+l=d~l[~(Lspuk+‘-f)], (2.22) 

since this expression can be easily generalized to the case of Neumann boundary 
conditions. We shall denote by MR (minimal residual) this strategy of dynamically 
choosing the acceleration parameter. 

Numerical Results. We present hereafter some numerical experiences concerning 
the finite element AD1 preconditioner described above. As a test problem, we chose 
U(x, JJ) = sin 271x cos 27ry and c = 0 in (2.1). 

Figure 1 shows the convergence histories of the iterative scheme (2.15) in which 
uk = 1, for two diffeent values of the grid parameter N. The logarithm of the discrete 
1* norm of the preconditioned residual (2.22) is plotted versus the number of itera- 
tions, for several choices of the AD1 cycle length LC. Shown is also the convergence 
of the iterative scheme (2.13) which uses the exact finite element preconditioner. 
The results confirm our prediction that the error reduction per iteration is essen- 
tially independent of N if the cycle length is chosen according to the logarithmic law 
described above. 

In the previous experiments we used one cycle of AD1 sweeps per Richardson 
iterations. In Fig. 2a we compare the behavior of the residual when the number NC 
of AD1 cycles per Richardson iteration is increased, but the length is kept fixed. It 
appears that the gain in speed produced by this strategy is not enough to compen- 
sate for the increase in cost (by a factor 3) for solving the preconditioning problem 
at each Richardson iteration. Fig. 2b shows that for the same cost it is more 
effective to use one long cycle of AD1 parameters rather than several short cycles. 
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Finally, in Fig. 3 we compare the convergence histories obtained with a fixed 
acceleration parameter and with the dynamically chosen parameter, according to 
the MR strategy. Unlike the case of finite difference preconditioners (see, e.g., [3]), 
the difference in the speed of convergence is moderate. Note that a = 1 is not the 
optimal value which maximizes the minimal error reduction factor (see [ 123); other 
nearby values yield a better convergence speed, but we have deliberately avoided 
a trial and error search. The similarity in the behavior of the two strategies for 
choosing the acceleration parameter confirm the better preconditioning properties 
of finite elements. This fact was first pointed out by Deville and Mund [6], who 
used a direct solution of the finite element system. Here we observe the same 
property when a cheaper, approximate solver is employed. 

Figure 3 also allows us to compare the performance of our finite element 
preconditioner with the one of the finite difference five-diagonal incompletely 
factorized matrix LY& proposed in [14]. Using in both cases the MR strategy in 
finding ak, our preconditioner gives a faster speed of convergence by a factor of 2.8 
for N = 16 and by a factor of 3.6 for N = 32. On the other hand, the cost of one 
Richardson iteration (2.15) is (12X + 10 log,N) N2 (where LC is the AD1 cycle 
length) for the method proposed here, and is (5 + 10 log,N) N2 for the [14] 
method. Hence, the cost ratio per iteration is 2.5 when N = 16 (LC= 6) and 2.7 
when N= 32 (LC = 8). We recall that the condition number rc of the matrix 
SBfd’ L, grows like fi (see [ 143); hence, a fixed reduction in the relative residual 
is achieved by the [14] method in 0(N2fi) operations. This must be compared 
with the O(N2 log,N)-ops cost of our method. Moreover, as already pointed out, 
our preconditioner is fully parallelizable. 

2.2. Three-Dimensional Problems 
By extending the notation of Section 2.1 to three dimensions in an obvious way, 

the mass and stiffness matrices in (2.17) now take the form 

It is known that the straightforward generalization of (2.19) to three space variables 
is unstable. Among the possible 3D splittings (see, e.g., Yanenko [ 18]), we have 
chosen the AD1 splitting proposed by Douglas [4], for its properties of consistency 
with the exact operator and strong stability. Thus, we set 

A, = S, + fcM, , A, = S, + $l4,, A,=S,+;cM, (2.24) 

and we introduce the new variables 
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where G and $ are obtained by suitable reorderings of w. Then, starting from 
arbitrary to, qo, and lo, we compute the general step 

-At”+‘Z,~ZI,~AA,~“-At”+‘Z,~ZI,~~,~”, 

( 
At n+l 

z,sz,0 My+2 A, ~**=Z~~I,~M,r*+2I,~I,~A,rl”, 
) 

At”+’ 

> 

At n+l 
(2.26) 

i”+‘=I,QI,QM,1**+-Z~QZ,QA,i”, 

z,Qz,QM,5”+1=z,QzI,Q~M,~“+‘, 

ZxQZzQM,rl la+1 =zxQzyQA4M,~“+? 

Finally, after the last iteration, we recover w from c by solving 

~=zzQA4M,1QM,‘~. (2.27) 

Let us assume for the sake of simplicity that N, = NY = N, = N. For each AD1 
iteration, the first sweep requires 3N2 independent one-dimensional matrix-vector 
multiplications and N2 independent solutions of one-dimensional systems, whereas 
the second and third sweeps, as well as the two final updates, each require N2 
matrix-vector multiplications and N2 system solutions. Assuming that all the 
matrices of the left-hand side of (2.26) are factorized once for all, it turns out that 
each AD1 iteration amounts to performing 12N2 one-dimensional matrix-vector 
multiplications. Recalling that all the one-dimensional matrices involved are 
tridiagonal, the total cost is about 36N3 scalar operations (operation = multiply 
plus add). 

As in the 2D case, a cyclic geometric sequence of parameters {At”} is chosen. 
Here, the error reduction factor per cycle cannot be reduced by an arbitrary small 
amount by increasing the cycle length; however, Douglas [4] has indicated a 
strategy of choice which leads to a small reduction factor. We recall hereafter the 
corresponding formulas, referring to [4] for the details. Let Pmin (resp., p,,,) be a 
lower (resp., upper) bound for the eigenvalues of the finite element matrix Afe Then, 
the sequence of parameters is chosen using 

n = 1, . . . . LC, (2.28) 
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where v > 1 is a parameter to be chosen, p is given by p = 3/( 1 + 3v2 + v3) in terms 
of v and LC is the cycle length determined by 

LC = int 
[ 

l”g(PminlPmax) 1 + 1 

WV/P) . 
(2.29) 

Following the optimality criterion proposed in [4], we chose v = 1.78 and we 
obtained the error reduction factor per cycle bounded by R = 0.5029. We conclude 
that, for three-dimensional problems, too, it is possible to get an estimate like 
(2.21), where E = R and the cycle length depends logarithmically on N through 
formula (2.29). 

Numerical Results. We present here numerical tests for the 3D problem, where 
the exact solution is chosen to be U(x, y, z) = cos 27~~. cos 27~~. cos 2nz and c = 0 
in (2.1). Figure 4 shows the convergence histories of the iterative scheme (2.15) 
for both fixed (c? = 1) and dynamically chosen acceleration parameters, for two 
different values of N. The dashed line represents the convergence history of 
the corresponding 2D problem where the c?s are chosen dynamically and the 
cycle length is the same as for the 3D problem. The experiments confirm the good 
performance of the proposed AD1 finite element preconditioner. Note that the 
cycle length LC given by (2.29) with v = 1.78 is 6 for N= 16 and 8 for N= 32. 
These are precisely lengths we used in the 2D tests in Fig. 3. 

2.3. The Variable Coefficient Case 

The AD1 schemes discussed so far can be suitably modified to become AD1 pre- 
conditioners even for a wide class of variable coefficient problems. For the sake of 
simplicity, we confine ourselves to the 2D case. We consider the boundary value 
problem 

- [(au, L + WY ),I + cu=.f in 52 

U=@ on a52, 
(2.30) 

where now a, b, and c depend (smoothly) on x and y, and a(x, y) > ao>O, 
b(x, y) > b. > 0, c(x, y) > 0, Vx, y E Q. Again, we are interested in solving (2.30) by 
an iterative procedure like (2.15). Unless a, 6, and c are nearly constant, the finite 
element preconditioner based on the Helmholtz operator (2.1) will not be efficient. 
Hence, we have to incorporate the variable coefficients into the AD1 preconditioner. 
This is trivial if each coefficient has a tensor product structure. If this is not the 
case, i.e., if the dependence of the coefficients upon x and y is general, the tensor 
product structure of the problem is lost, and one cannot solve exactly the finite 
element approximation of (2.30) by AD1 schemes. However, we are not indeed 
interested in doing this, but rather in finding a preconditioner for the spectral 
Chebyshev operator. Thus, taking into account the local character of finite element 
methods, we propose to “locally” modify the coefficients a, 6, and c which appear 
in the finite element preconditioner, in order to give them a “local” tensor product 
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structure, which allows the use of an AD1 solver. More precisely, let us consider the 
term S’“’ of the stiffness matrix S corresponding to the operator -(au,),. The 
(ti, cj) node contributes to SC”’ with the row 

(S’“‘), k,=J a(% Y) aI a;(X) Pj(Y) B,(Y) dxdY, l<k,l<N-1. (2.31) 
R 

Taking into account that (S(“‘),,,,=O if Ir-jl> 1, we replace (2.31) by 

(wij,kl= J-* g(j)(X) a:(X) a;(X) Bj(Y) PAY) dxdY, 

where 

g(j)(x) = 1 
meas( Bj) s 4~ Y 1 dy, Bj = support of ai, 

B, 

or simply 

(2.32) 

,-(j)(x) = a(x, tj,. (2.33)’ 

Setting Sy’= {jyl 6?j)(~)a~(x)a~(x)dx},~~,,~,-,, then 

(S(x))ijk,= (S”‘@M x .v r/,kl. ). 

The term corresponding to - (bU,,), can be dealt with similarly. It is easily seen 
that the form (2.34) and the corresponding one in the y-direction allow one to use 
the AD1 scheme described in (2.19). A technique of local tensorization based on 
patches of finite elements in AD1 methods was proposed by Hayes [9] in a dif- 
ferent context. 

As far as the costs are concerned, one has to factorize and store 2N one-dimen- 
U) sional matrices (S’$, 1 <j < N - 1, and S, , 1 < i < N - 1) instead of two matrices 

(S, and S,,), as for the constant coefficient case. A saving can come by using the 
same matrix throughout several rows (or columns) of the domain, provided the 
coefficient varies slowly there. 

Numerical Results. We have computed the approximate solution of problem 
(2.30) with a = b = 1 + x’y’ and c = 0 on a 32 x 32 mesh, by the method here 
described. First, we observed very little sensitiveness of the convergence histories on 
the particular choice (2.33) or (2.33)’ of 6”’ in (2.32). 

Figure 5 allows us to compare the behavior of the variable coeflicient precondi- 
tioner to the one of the Laplace preconditioner, showing a superior performance of 
the former over the latter one. This property becomes more and more evident as 
long as the total variation of the coeficients increases, although the rates of 
convergence slow down for both preconditioners. 
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FIG. 5. Convergence histories of the variable coefficient problem (2.30) with a = b = 1 + x2y2, c = 0, 
N, = NY = 32, using different preconditioners: the exact finite element scheme for the Laplace operator 
(curve A), the proposed ADI scheme with modified coefficients for (LC, NC) = (8, 1) (curve B), the 
exact finite element scheme with modified coefficients (curve C). 

3. NEUMANN BOUNDARY CONDITIONS 

In this section we discuss iterative methods for solving Chebyshev approxima- 
tions to Neumann or mixed Dirichlet-Neumann boundary value problems. For the 
sake of simplicity, we carry out our discussion for the two dimensional domain; the 
extension to higher dimension is straightforward. 

Let us assume that the boundary condition is of the same type (Dirichlet or 
Neumann) at all the points of a side of the square Q. Denote by aa,, (resp., &2,) 
the collection of sides of Sz where a Neumann (resp., Dirichlet) boundary condition 
is imposed. We consider the problem 

-AU+cU=f in Sz 

au/an= Y on asz, (3.1) 

iJ=@ on asz,, 
where c > 0 is a constant and f, @, !P are given, smooth data. 
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As usual, the Chebyshev approximation of U is a polynomial u = USE P,,,(Q) 
identified through its values at the gridpoints of G,. At the interior gridpoints we 
collocate the differential equation 

C-du+cul(r)=f(t) Q(EG~~SZ. (3.2) 

At a boundary gridpoint which is interior to a side, we impose the proper boundary 
condition: 

(3.3.1) 

45) = @(Cl if tEG,n&S,. (3.3.2) 

The Dirichlet boundary condition is also enforced at each vertex belonging to a 
Dirichlet side. Indeed our numerical experiences say that the Dirichlet boundary 
condition behaves better than the Neumann one, both in terms of final accuracy on 
the solution and in terms of speed of convergence of the iterative procedure. 
Finally, at a vertex joining two Neumann sides, there is a potential freedom of 
choice: one can impose the condition carried by either side. or a linear combination 
between the two conditions, or even more sophisticated linear relations involving 
the residual of the partial differential equation at the vertex. 

Our idea is to exploit the capability of the finite element method of handling 
Neumann conditions in a natural way, in order to define the correct boundary con- 
dition for the Chebyshev solution through an unambiguous procedure. In other 
words, among all the possible conditions which can be enforced on the Chebyshev 
solution at a Neumann/Neumann vertex, we pick up the one suggested by the 
variational formulation of the finite element scheme used as a preconditioner. It is 
worth stressing that our approach will not distroy what is commonly referred to as 
“the spectral accuracy” of Chebyshev methods. Indeed, the final algebraic relations 
satisfied by our solution at the convergence of the iterative scheme all involve 
derivatives computed in the usual pseudospectral manner. We set here 

Vhf@) = {Uh E Vh I Uh(O = @(4) V~EGNnaQ,}; P-z= Vh(0). (3.4) 

Let wi be the finite element approximation of the boundary value problem (3.1), 
i.e., the solution of the problem 

wx E Vh(@), jQ owwJh + CWSh) = j*fih + ja, ‘yyh Qv, E c. (3.5) 
n 

Moreover, given any function FeL*(!S) and q E L*(aQ,), let us denote by 
w,, = A$’ [F, ~1 the finite element solution of the problem: 

wh E v;, jQ (vW,ba + CWhuh) = il, Fv, + J;, ?fvh kl, E t’-;. (3.6) 
n 
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We define a preconditioned Richardson iterative method as follows: The initial 
point is 

u”= z,w;, (3.7) 

whereas the subsequent iterations are defined by the formula 

u k+l=uk-,kz A-’ N fi z,O(L,uk -f ), Jh ($- >I * (3.8) 

Here, Zz is the finite element interpolation operator at the interior of the domain, 
introduced in (2.9). Jh is a (one-dimensional) finite element interpolation operator 
on the portion of the boundary, where Neumann boundary conditions are 
prescribed. Precisely, let S be a side of X4,, and let @ be a continuous function 
on S; define Jh(@) on S by the conditions: 

Jh(@) is continuous on S, piecewise linear between two contiguous 
grid points of G, n S, and satisfies: 

Jh(@)(5) = G(t) V< E G, n S, unless 5 is a vertex belonging to a 
Dirichlet side, 

Jh(@)(s) = 0 at a vertex belonging to a Dirichlet side. (3.9) 

The last condition corresponds to our choice of enforcing the Dirichlet boundary 
condition at a vertex where a Dirichlet and a Neumann side meet. Note that the 
function Jh(@) need not be continuous throughout X!,, since it may have jumps 
at the vertices belonging to two Neumann sides. If the sequence {u” 1 k E N } 
generated by (3.7~(3.8) converges to a limit polynomial urn oP,,(Q), and the 
sequence (u” ) k E N} is bounded away from 0, then 

A,$ Z;(L,u”-f),J,,(g-p)]=O, 
[ 

i.e., (see (3.5)) 

~*z~(L,uY-f)u,+i~*J~(~-~)V~=O, b’,d;. (3.10) 
n 

Taking v,=Z~(L,u”-f), we get Z~(L,u”--f)=O; i.e., uoo satisfies (3.2). 
Moreover, urn fulfills (3.3.2) because so do all the iterates uk. Finally, the Neumann 
boundary condition is translated into the form 

where Th is the space of the restrictions of the functions of I’: to the boundary 852. 
Let us give an interpretation to this condition in a pointwise form. If S is a 



328 CANUTO AND PIETRA 

Neumann side whose vertices are both common with Dirichlet sides, then 
J,(du”/& - !P) is zero at both vertices and we can choose in (3.11) the function qh 
equal to J,(&P’/& - !P) on S and to zero elsewhere. This gives .Z,(&P’/&r - Y) = 0 
on S, whence (3.3.1) holds for the gridpoints interior to S. On the contrary, on two 
or more consecutive Neumann sides, J,(c?u~/& - !P) need not be identically zero, 
since this would mean that at each common vertex two Neumann conditions-one 
for each direction-would be satisfied. What we obtain is that .Z,(i?~~/an - !P) is 
globally “small,” in the sense that it is orthogonal to all the test functions in T,,. 
Taking as a test function a Lagrange basis function concentration at a boundary 
node, it is easily seen that (3.11) enforces a certain linear combination of the 
Neumann conditions at three consecutive boundary nodes to be zero. 

As for pure Dirichlet boundary conditions, in performing each Richardson step 
(3.8), we do not compute the finite element correction Ar;’ [F, 11 exactly, but we 
rather use few sweeps of ADI-iterations, yielding an approximate correction 
Lc4fq1 [F, ~1. The AD&method is the same as the one described in the previous 
section, with the obvious modifications required by the new boundary conditions. 

Finally, the acceleration parameter a“ can be chosen according to the same 
strategies previously discussed. 

Numerical Results. We tested different boundary value problems of the type 
(3.1) for the exact solution U(x, y) = sin 27rx cos 27cy (which exhibits jumps on the 
normal derivative at each corner of the domain s2). 

Let the sides of 52 be numbered counterclockwise, starting from the side (x = 1 }. 
In order to indicate the type of boundary conditions on aQ, we will use the nota- 
tion b, b2b3b4, where each bi is D or N depending on whether the Dirichlet or the 
Neumann boundary condition has been chosen on the side i. The coefficient c in 
(3.1) was chosen to be either 0 or 1, except in the case of fully Neumann conditions, 
i.e., NNNN, where only c = 1 was considered in order to preserve the well-posed- 
ness of the problem. 

Figure 6a shows the convergence histories of the preconditioned residual 

res=&$l(Z~(Lsp~--f), Jh g-g 
( >> 

for different boundary conditions, c = 1 and N, = NY = 32. The acceleration 
parameter was ak = 1, and at each Richardson iteration one cycle of AD1 steps of 
length LC = 8 was 
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TABLE I 

Relative Errors in the Maximum Norm with the Exact Solution of (3.1), U(x, y) = sin 2nx sin 2ny, 
for Several Combinations of Boundary Conditions 

DDDD NDDD NDND NNDD DNNN DDDD NNNN 
NxxN, (c=O) (c=O) (c=O) (c=O) (c=O) (c=l) (C” 1) 

8x8 0.30 E- 1 0.10 EO 0.97 E- 1 0.30 EO 0.38 EO 0.30 E- 1 0.26 EO 
16x 16 0.23 E-6 0.54E-5 0.53 E-5 0.84E-5 O.lOE-4 0.23 E-6 0.76 E-5 
32x32 0.27 E- 14 0.54 E-12 0.15 E- 11 0.23 E- 11 0.30 E- 10 0.28 E- 14 0.12 E- 11 

In Table I we report the relative errors with the exact solution in the maximum 
norm, for several combination of boundary conditions and increasing number of 
gridpoints. For the tested function, the two first digits of the relative error stabilize 
between the 18th and the 25th iteration, depending upon the boundary conditions. 
We observe a monotonic loss of accuracy in the computed solution, as the number 
of Neumann sides increases. This phenomenon is more and more evident as the grid 
becomes liner and finer. Moreover, it occurs also for the boundary combinations 
NDDD and NDND, which have no Neumann/Neumann vertex. Note that for 
N, = NY = 32, there is a loss of accuracy of over three orders of magnitude between 
the case DDDD and the case NDND! Also recall that in the latter case the com- 
puted solution satisfies the exact Neumann boundary condition at each collocation 
point belonging to a Neumann side. Thus, the phenomenon of the loss of accuracy 
should not be related to the way we impose the Neumann conditions, but it seems 
intrinsic to the collocation method. 

Finally, let us point out that by a straightforward modification of the operator 
Jh at the Neumann/Neumann vertices, it is possible to enforce any convex combina- 
tion of the two Neumann conditions there. Our numerical tests exhibit very little 
sensitivity to the particular implementation of the Neumann condition at a vertex. 
As pointed out before, the overall accuracy is determined by the number of 
Neumann sides. All the implementations are comparable also in terms of speed of 
convergence of the Richardson iterations, since all of them are based on the varia- 
tional formulation (3.5) of the finite element preconditioner. 

4. PARTITIONING THE DOMAIN 

Let us consider problem (3.1) again, under the same conditions. We want to 
solve it by partitioning the domain Q into four adjoining subdomains and defining 
a Chebyshev collocation method on each subdomain, supplemented by suitable 
matching conditions at the interfaces. 

In order to keep the notation as simple as possible, we assume in the following 
discussion that the domain s2 is divided into four equal domains SZ(‘) (I= 1, . . . . 4) by 
the Cartesian axes (see Fig. 7). Let r be the union of the internal interfaces between 
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FIG. 7. The decomposition of the domain in four subdomains. 

the subdomains, and let O(0, 0) denote the common vertex of the subdomains. We 
make the further assumption that on two adjoining subdomains the degree of the 
polynomials in the direction of the common side is the same. Denoting by 
IV(‘) = (Nlf’, A$?) the degrees of the polynomials to be used on Q”‘, we thus assume 
that 

Let 

NY’= NC’, N:” = Nr’, N1;2’= N;3’, NJY” = N1”‘. (4.1) 

G$‘= {(“‘=((i”, c$“)lO<&N;‘, O<j<N;‘} (4.2) 

be the Chebyshev grid on the domain @‘I, obtained from the grid on the reference 
square ( - 1, 1) x ( - 1, 1) by an atline transformation. By the previous assumption, 
gridpoints on r belong to adjoining domains. We set G, = UT= I G!$. We look for 
an approximation u = uN of the solution U of (3.1) in the space 

9qf-2) = {u E CO(Q)1 UpI!) E PN(I@2(‘)), I = 1, . ..) 41. (4.3) 

Thus, u is made-up of four polynomials which match at the gridpoints on I’, and 
hence, everywhere on f. The function u satisfies the differential equation at the inte- 
rior Chebyshev points of each subdomain, i.e., (3.2) holds for all <(‘) E Gg’ n O(l), 
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I = 1, . . . . 4. The boundary conditions are imposed as described in the previous sec- 
tion. At the interface, we have to satisfy a continuity condition which guarantees 
that the local solutions on each subdomain match to form a global solution on the 
whole domain. At a smooth interface between two subdomains, this is achieved by 
requiring the sum of the outward normal derivatives from the two sides to be zero. 
Thus, at a gridpoint 5 which is interior to a common side between two subdomains 
~2~‘) and a(‘+ ‘) (a(‘) E Q(i)), we impose 

(4.4) 

At the common corner 0, one cannot enforce at the same time the continuity of 
both the x-derivative and the y-derivative, as the resulting system would be over- 
determined. In order to overcome such a difficulty-which is of the same nature of 
the one encountered in the previous section at a Neumann/Neumann vertex-we 
resort to a variational formulation of the interface condition, formulated in terms 
of a finite element preconditioner. Following Deville and Mund [6], we use here 
a global finite element preconditioner throughout the domain 52. 

Let us describe the details of the method by assuming-for the sake of sim- 
plicity-that the boundary conditions in (3.1) are homogeneous Dirichlet. Observe 
that if U is a continuous function on a, which solves (3.1) separately on each sub- 
domain a(‘), then U satisfies 

f (VU Vu + CUV) dx dy 
R 

=s,fv dx 4 +s,, [g]v &+j-[$q 0 dx, VVE C;(Q), (4.5) 

where ~X={(x,O)l-l<x<l},~Y={(O,y)l-l<y<l} and [aU/ax] (resp., 
[cTU/tYy] ) is the jump of the x-derivative (resp., the y-derivative) of U across r, 
(rev., r,). 

The variational condition 

(4.6) 

is equivalent to the fact that U is the global solution of (3.1) throughout Q. There- 
fore, on the discrete level, we are led to enforce the finite element analog of (4.6), 
where U is replaced by the spectral solution U. 

Let I’: denote the space of the continuous functions in 52, which are piecewise 
bilinear on the grid G, defined by (4.1) and which vanish on X?. Given a function 
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FE L2(Q) and two functions xx E L*(Z,), xY E L*(Z’,), let w,, = A/,‘[F, xx, x,] 
denote the solution of the following problem: 

WhE vi, 
s 62 

(Vv,Vl'h+cw,l.'h)dXdy=j/i'hdXdy+jrx~,UdX+j x,,vdy, h&q. 
r, 

(4.7) 

Given a function v E Co(Q), let ZEv be the function in e which coincides with v at 
the interior gridpoints of each subdomain and which is zero on 852 and on Z. 
Furthermore, given a function @ E C”(r,), let Jh,x@ be the continuous, piecewise 
linear function between two contiguous gridpoints on Z,, which coincides with @ 
at each interior gridpoints on Z, and which vanishes at the endpoints. Let the 
operator Jh,y be defined similarly with respect to Z,. Finally, let Z,v denote the 
function in PN(Q) which coincides with v E C’(Q) at all the gridpoints of G,. 

We define the following Richardson iterative procedure: starting from the initial 
point u. = IN wlp’, where wp) = A/,‘[f, 0, 01, set for k = 0, 1, 2, . . . . 

Uk+l=Uk-ukz A-’ N fe z:(L,uk -f 1, J/z, x ([$+a,,([~])]~ (4.8) 

where uk is a suitable acceleration parameter. 
Suppose that the sequence { uk 1 k E N} generated by (4.8) converges to a limit 

function ux) E PN(Q), and that the sequence {M” 1 k E N} is bounded away from 0. 
Then, taking into account (4.7), P satisfies 

vu, E v;. (4.9) 

Taking test functions which vanish on Z and recalling the definition of the inter- 
polation operator Zp, it is easily seen that urn satisfies the differential equation at 
all the interior gridpoints of each subdomain. Thus, (4.9) is reduced to the varia- 
tional identity 

In other words, we enforce the jumps in the normal derivatives across the interfaces 
to be orthogonal to all the discrete functions on ZY We call (4.10) the variational 
interface condition. Again, one can interpret this condition as the vanishing of linear 
combinations of jumps in the normal derivatives, computed at neighboring grid- 
points on r. 

For comparison purposes, we have also considered other ways of imposing the 
matching of the four spectral solutions at the interfaces. By forcing the interpolation 
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operator Jh,l on r, to be zero at the center 0, condition (4.10) splits into two 
decoupled conditions, i.e., 

v,dx=O VV~E q; u,dy=O tlv,E e 

(4.11) 

(where s,,X denotes the modified interpolation operator). By a proper choice of test 
functions, it is easily seen that (4.11) enforce the jump of the normal derivative to 
be zero at each collocation point on I’ other than the center, whereas there we have 

ad= L-1 ax =Oat 0; 
ac 

no condition on - at 0. [ 1 ay 
(4.12) 

Symmetric conditions can be obtained by modifying J,,Y instead of J,,,. 
A different approach to the interface problem consists of formulating it as a mini- 

mization problem. Dihn, Glowinski, and Periaux [7] introduced and discussed this 
strategy for finite element approximations. Marion and Gay [ 1 l] applied the 
method to spectral approximations, in the case of two adjoining subdomains. We 
consider here the decomposition of Fig. 7. For the sake of simplicity, we describe 
the method on the discrete level, although it is possible to formulate it on the exact 
boundary value problem (3.1). We assume that the physical boundary conditions 
are homogeneous Dirichlet. Let g be a continuous function on the interface r, 
which is a polynomial of degree N, on r, and of degree NY on J’,, and which 
vanishes at the four endpoints of r. Let V denote the finite dimensional space 
spanned by these functions. For I= 1,2, 3,4 let II(‘) = v”‘(g) E P,(Q”‘) be the 
Chebyshev collocation approximation to the Dirichlet boundary value problem 

-du”’ + cu(/) =f in a(‘) 
u(l) z!z 0 on aa n a52 (4.13) 
yu) - -g on aa n r. 

Since by definition the polynomials u(‘) (I = 1, . . . . 4) have a common trace on r, they 
form a global function u = u(g) belonging to 9$(Q) (see (4.3)). Let us introduce the 
quadratic functional J: V + R, 

(4.14) 

and let us look for the solution gmin E V of the minimization problem 

J(gmin)=$z J(g). (4.15) 

Finally, take u = U(gmin) as the spectral approximation of Problem (3.1). Thus, u 
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minimizes the jumps of the normal derivative across the interface r among all the 
collocation solutions of the subdomain problems (4.13). The minimization problem 
(4.15) can be solved by a descent strategy, such as the conjugate gradient method. 
At each step, the subdomain problems (4.13) are solved, each one independently 
from the others. Thus, this approach guarantees a high degree of parallelism. 
Efficient minimization techniques-which include a finite element preconditioned 
version of the conjugate gradient method-are currently under investigation. The 
results will be reported elsewhere. Here, we will only compare the minimization 
approach to other subdomain approaches in terms of accuracy of the solutions. We 
refer to (4.14), (4.15) as to the minimality interface condition. 

Numerical Results. First, we focus on the efhciency of the iterative method 
(4.8). Figure 8 shows the convergence histories of the residual, for a fixed or a 
dynamically chosen acceleration parameter, when the solution of (3.1) is 
U(x, y) = cos 27tx .cos ny and c = 1. In both cases, we also plotted the convergence 
history of the single-domain method for the same problem, which uses the same 
number of total unknowns. The results indicate that the inclusion of the interface 
integral in the formulation of the finite element preconditioner (see (4.8)) has only 
a minor effect on the condition number of the problem. 

Next, we compare the different strategies of enforcing the continuity condition at 
the common vertex 0. Figure 9 shows the convergence histories corresponding to 
the variational interface condition (4.10) and to the pointwise condition (4.12). In 
both cases, we tested the fixed acceleration parameter strategy, as well as the mini- 
mal residual strategy. It is clear that the pointwise condition (4.12) leads to a worse 
conditioned problem than the variational condition: note that the minimal residual 
strategy breaks down after few iterations. In (4.12) the interface condition is 
not symmetric in x and y: this results in the undefiniteness of the symmetric part 
of the preconditioned matrix. On the contrary, the two convergence histories 
corresponding to the variational interface condition are fairly close to each other 
and show a constant reduction of the error throughout the iterations. We conclude 
that the variational interface condition has to be preferred in terms of numerical 
efficiency. 

A comparison in terms of accuracy is presented in Table II. It contains 
the relative errors in the maximum norm with the exact solution U(x, y) = 
cos 27rx. cos rcy of problem (2.1) with c = 1, for different grids and four different 
interface conditions: the variational condition (4.10), the minimality interface 
condition (4.15), the pointwise condition (4.12), the symmetric condition in which 
[&/dy] is forced to be zero at 0. The minimality condition yields slightly better 
results, as expected. Conversely, the pointwise condition on [&@y] produces 
slightly worse results: indeed, the y-derivative of the exact solution at the origin is 
half the x-derivative there; thus, we force to zero the weaker jump of the 
approximate solution, instead of the stronger one. However, very little difference 
among the methods is observed. These results indicate a low sensitiveness of the 
error to the interface treatment, at least for smooth solutions. 
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TABLE II 

Relative Errors in the Maximum Norm with the Exact Solution of (3.1), U(x, y) = cos 2nx cos ny, 
for Several Interface Conditions 

Subdomain 
grid Nxxn: 

Variational 
interface 
condition 

Minimality 
interface 
condition 

4x4 0.62 EO 0.54 EO 0.62 EO 0.12 EO 
8x8 0.12 E-2 0.10 E-2 0.12 E-2 0.13 E-2 

16x 16 0.49 E- 10 0.41 E-10 0.49 E- 10 0.54 E- 10 
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TABLE III 

Accuracy of the Spectral Domain Decomposition Method; Relative Errors in the Maximum Norm in 
the Case of Uniformly Structured Solutions of (3.1) 

4-G Y) = 44 v) = 4% Y) = 
sin 2nx sin ny cos 2ax sin ny cos2nxcosny 

4Dom,4x4 0.14 .lXl 0.54 EII 0.62 EO 
1 Dom,8x8 0.24 E- 1 0.33 E- 1 0.35 E- 1 

4Dom,8x8 0.13 E-3 0.11 E-2 0.12 E-2 
1 Dom, 16 x 16 0.23 E-6 O.lOE-6 0.11 E-6 

4Dom, 16x16 0.27 E- 11 0.43 E- 10 0.49 E- 10 
1 Dom, 32 x 32 0.46 E- 14 0.32 E- 14 0.38 E- 14 

Finally, let us address the issue of accuracy for spectral domain decompositions. 
In Table III, the relative errors in the maximum norm with three different test func- 
tions are reported. We first observe that the multidomain approach preserves the 
overall spectral accuracy of the Chebyshev method. However, a comparison with 
the errors given by the monodomain approach shows a dramatic loss of accuracy. 
The nature of such a phenomenon can be made evident by taking into account the 
behavior of the selected test functions at the interface lY The function 
U(x, y) = sin 27~. sin ny is antisymmetric with respect to both the x-axis and the 
y-axis. It is easy to check that each iterate uk produced by the Richardson 
method (4.8) preserves this property, if the initial guess is itself antisymmetric. 
Thus, each iterate automatically has zero jump of the normal derivatives at all 
points on r, including the origin. Nonetheless, we see a loss of three orders of 
accuracy on both the 16 x 16 and the 32 x 32 grids. This error is, of course, inde- 
pendent of the way the continuity condition is enforced. The same situation occurs 
when the test function U(x, y) = cos 27~~. sin 7cy is used. Since it is antisymmetric in 
the y-direction, all the Richardson iterates have zero jumps of the y-derivative on 
f,. Thus, at the limit, (4.10) implies that also the jumps of the x-derivative vanish 
identically on r,. The errors are even worse than those of the previous case. 
Finally, the iterate produced by the Richardson method for the test function 
U(x, y) = cos 27cx. cos ny do have nonzero jumps of their normal derivatives. Our 
solution satisfies (4.11). For the 8 x 8 subgrid the jumps range from lop4 at the 
center to lop6 at the boundaries; for the 16 x 16 subgrids we observed jumps of 
order 10-l’ at the center down to machine accuracy at the boundary. The errors 
with the exact solution are essentially comparable to those of the second case. 

The test functions used so far are smooth and exhibit a uniform structure 
throughout the domain. Hence, the loss of accuracy observed in the multidomain 
scheme has to be related to the use of the “local,” nonsmooth basis associated with 
the domain partition, in lieu of the global, smooth basis of the classical Chebyshev 
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method on the single domain. In order to understand to what extent it is preferable 
to resort to a domain decomposition as far as accuracy is concerned, we 
have modified our test functions, by “putting more structure” near a corner 
of the domain. Precisely, we have considered the functions U(x, y) = 
cos(2a@,,(x)) . cos(27c@,(y)), with Q?(s) = [(s + 1) + 2-)‘+ ‘(.s + 1)?]/2 - 1, y >O. 
In other words, in each space dimension, we compress the subinterval [0, l] into 
the interval [S,, 11, where S, > 0 is the solution of Qy(SY) = 0. We used two dif- 
ferent strategies of domain decomposition: (i) the four domains meet at the origin 
0 = (0,O) as before, but the subgrid on the northeast domain-where the structure 
of U concentrates-is allowed to be finer than the other ones; or (ii) the four 
domains meet at V, = (S,, s,)-i.e., there is precisely one full “wave” per domain- 
but the subgrids carry the same number of points. Table IV reports the relative 
errors in the maximum norm on Q, for increasing mesh parameters. In each case, 
we use an N/-x N,-grid on the NE domain and an N, x N,-grid on the SW domain 
(the remaining grids are determinted by condition (4.1)). For the single domain 
method, we use an (Nf+ N,) x (Nf+ N,)-grid; thus, each row in Table IV 
corresponds to the same total number of unknowns. The results indicate that the 
single domain scheme is still the most accurate one as long as the solution main- 
tains comparable structures in the different regions of the physical domain 
(case y = 2). Conversely, partitioning the domain may enhance accuracy for non- 
uniform solutions (case y = 8; note that the subinterval [0.62,1] is less than 20% 
the size of the full interval [ - 1, 11). Furthermore, only strategy (ii) of domain 
decomposition leads to acceptable results, indicating the need of a careful choice of 
the decomposition pattern (let us mention here that alternative approaches, based 
on the adaptive regridding on the single domain, have recently appeared in the 
literature (see, e.g. [15, 161)). 

TABLE IV 

Accuracy of the Spectral Domain Decomposition Method: Relative Errors in the Maximum Norm in 
the Case of Nonuniformly Structured Solutions of (3.1) 

y = 2, I’, = (0.23,0.23) y = 8, I’, = (0.62,0.62) 

Nfi N, 
Single 4 domains 4 domains Single 4 domains 4 domains 

domain corner at 0 corner at V, domain corner at 0 corner at V, 

4,4 0.17 E- 1 OAOEO 0.14 EO 0.14 El 0.32 El 0.92 E - 1 
8,4 - 0.19 EO 0.15 EO 
83 0.81 E-5 0.26 E-2 0.95 E-3 0.92 E-2 0.16 EO 0.80 E-4 

16,8 - 0.17 E-3 0.69 E-3 
16,16 0.31 E- 14 0.23 E-7 0.68 E- 8 0.16 E-6 0.61 E-3 0.12 E-7 
32,16 - 0.57 E-9 0.16 E-9 
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5. CONCLUSIONS 

We have investigated several issues related to the use of finite element precondi- 
tioners in solving Helmholtz equations by spectral collocation methods. 

First, we confirm that finite elements exhibit performance superior to that of 
finite differences in preconditioning spectral methods, as first shown by Deville and 
Mund [6] (see also [7]). The new point here is that the superior performance is 
maintained, at lower cost, if the direct finite element solver is suitably replaced by 
an iterative approximate solver. We have chosen ADI iterations because they enjoy 
the same tensor product structure as spectral methods and they are easily amenable 
to parallel implementation. Of course, other fast solution techniques of the finite 
element discretization could be used instead. 

Next, we indicate a correct and efficient way of enforcing Neumann boundary 
conditions by exploiting the variational formulation of finite elements. The speed of 
convergence of the iterative scheme is moderately affected by the presence of 
Neumann sides, and the scheme never breaks down. On the other hand, we observe 
a loss of accuracy in the spectral collocation solution whenever Neumann boundary 
conditions are enforced. The approximation error decays at the same rate as the 
one corresponding to pure Dirichlet boundary conditions, but the former one 
remains larger than the latter one by some orders of magnitude. 

Finally, we show how to take advantage of the variational formulation of finite 
elements to enforce the patching conditions in a spectral multidomain method. 
Cross-points can be easily handled by our formulation. Concerning the accuracy of 
spectral multidomain solutions, we observe that it may not be wise to adopt a 
domain decomposition approach for the exclusive purpose of parallelization (i.e., 
for assigning each subdomain to a different processor). If the solution is expected 
to have comparable smoothness throughout the physical domain, it is convenient 
to keep the computational domain as large as possible, in order to get the maxi- 
mum accuracy assured by the global expansion of spectral methods. Parallelism can 
be better exploited in the process of solving the resulting algebraic system (a discus- 
sion of the possible strategies of parallelization of spectral methods can be found in 
[ 1 ] ). Of course, partitioning the domain is unavoidable in non-Cartesian geometries 
and is highly recommended when the solution has different structures in different 
regions of the physical domain. 

APPENDIX A 

In the following, we go back to the ADI-finite element preconditioner introduced 
in Section 2 for the 2D case. Our aim is to prove, in the simplified case of periodic 
boundary conditions, that the condition number of the matrix &$’ L, is bounded 
independently of the mesh parameters N, and NY, provided the AD1 cycle length 
is increased at a logarithmic rate in the mesh parameters. Thus, the basis functions 
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will be trigonometric polynomials, and the collocation points will be equally spaced 
in the domian. For the sake of simplicity, we consider the problem 

-AU=f in 1;2 = (0,27c)’ 

u 2n-periodic in x and y. 

Moreover, we normalize U by the condition Jhl Udx dy = 0. Let L denote the 
matrix corresponding to the Fourier collocation approximation of this problem at 
the uniform grid { emj = (mn/N, &c/N)1 0 < m, j < 2N- 1 }. The preconditioning 
matrix A is obtained by approximating the same problem via bilinear finite 
elements on the same grid. d-’ will denote the matrix obtained by applying to the 
finite element problem one cycle of the AD1 procedure described in Section 2. The 
matrices L and A have the same set of eigenvectors (~1 -N< k, I < N- 1, 
k, 1# 0}, where 

skl(emj) = e i(km + lik+‘), 0 <j, m < 2N _ 1. 

The eigenvalue of L corresponding to the eigenvector Sk. is &, = k* + I*, whereas the 
eigenvalue of A is 

Pkl’6 
1 - cos(kn/N) + 1 - cos(l?r/N) 
2 + cos(kn/N) 

Let ckl= p;llZk, be the eigenvalue of the matrix A -‘L. It is easy to check that 

0.69 < akl< 1, -N<k, If N- 1. (A.1 1 

It follows that the condition number rc(A-‘L) of A-‘L satisfies 

K(A -IL) < 1.45. (~4.2) 

We recall that if A is the matrix of the finite difference preconditioning, one has for 
the same boundary value problem K(A-‘L) < 2.45. Thus, the finite element 
approach yields a better preconditioning property for spectral systems. We shall 
prove that E = cond(d-‘L) is itself bounded independently of N, provided that the 
cycle length LC of the AD1 procedure is chosen properly. To this end, let ck[ be the 
eigenvalue of sK’L corresponding to the eigenvector sk. 

PROPOSITION 1. Let K be the condition number of A-‘L, and let i? be the condi- 
tion number of SZ’ - ‘L. Given a cycle length LC of the ADI procedure (2.19), there 
exists E, with 0 <E < 1 and E dependent on LC, such that 

R=(l-&)-lK. b4.3) 
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Proof: First, note that pk, splits in the sum pk, = pk + p,, where pk, p, are the 
eigenvalues of the one-dimensional finite element matrix. Then observe the relation 
between A -‘ski and &’ ~ ‘sk,, 

d-k,,= A-’ Sk/ - (l/P/d) J%,> (A.41 

where E denotes the operator which advances the error between the exact solution 
of the finite element problem and the one computed by ADI through a parameter 
sequence of length LC. It is known (see [13]) that the error reduction on a single 
eigenfunction ski is represented by the formula 

Es,, = EkiSkl, with 
Lc 1 - At”pk 1 - At”p, 

Ek,= E(pk, p,, Lc) = n 
,,= , 1 + At”pk 1 + At”p,’ (A.51 

where {At”} is the set of parameters of the AD1 procedure. It is obvious that 

06&k,< 1. (A.61 

Now, (A.4) and (A.5) imply 

&-lLSkl= P,i$kdl -&k,) ski, 

whence 

6kl = ( 1 - &kl) gk/, (A.71 

Due to (A.7) and (A.6), there exists a constant E = s(LC), with 0 < s < 1, such that 

gmin(l -&I 6 ckl< cmax, (A.81 

where cmin, o,,, denote the minimum and the maximum eigenvalue of A - ‘L. (A.8) 
implies immediately (A.3). Thus, Proposition 1 is proven. 

In (A.3), E might become arbitrarily close to 1 as N increases, so that our 
iterative scheme might break down. This is not the case if the parameter sequence 
{At”} is chosen following the strategy of [ 131 and the cycle length LC is O(log,N). 
We recall that the range [Pmin, p,,,] of the eigenvalues pk, k= --iv, . . . . IV- 1, is 
divided in nonuniform intervals Z,,, in such a way that exists At” satisfying 

(A.91 

In this way, after one cycle, each eigenvector is reduced by a factor at least E (see 
(A.5)). The resulting cycle length LC satisfies 

1-d 2Lc 
( > 1-A = PmaxlPmln~ (A.lO) 
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Recalling that Prnax/Pmin = O(N*), we obtain 

Thus, if LC N log,(N), E is bounded independently of N. Proposition 1 and (A.1 1) 
allow us to state the final result. 

PROPOSITION 2. Let K be the condition number of A - ‘L, and let I? be the condi- 
tion number of d-‘L. If the cycle length LC of the ADZprocedure defined by (2.19) 
satisfies LC= O(log,N), there exists a constant E, bounded independently of N, with 
0 GE < 1, such that 
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